LRU Cache
LRU Cache
LeetCode https://leetcode.cn/problems/lru-cache/
这是个啥玩意?? https://en.wikipedia.org/wiki/Cache_replacement_policies#LRU
题目描述
请你设计并实现一个满足LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache
类:
LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入 该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入
1
2
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
1
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
1
2
3
4
5
6
7
8
9
10
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
提示:
- 1 <= capacity <= 3000
- 0 <= key <= 10000
- 0 <= value <= 105
- 最多调用 2 * 105 次 get 和 put
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class LRUCache {
public LRUCache(int capacity) {
}
public int get(int key) {
}
public void put(int key, int value) {
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
Solution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class LRUCache {
private static class Node {
Node next;
Node prev;
int key;
int value;
Node(int key, int value) {
this.key = key;
this.value = value;
}
}
private final int capacity;
private Node head;
private Node tail;
private Map<int, Node> map;
public LRUCache(int capacity) {
this.capacity = capacity;
this.map = new HashMap<>();
}
public int get(int key) {
Node node = map.get(key);
if (node == null) {
return -1;
}
remove(node);
append(node);
return node.value;
}
public void put(int key, int value) {
Node node = null;
if (map.containsKey(key)) {
node = map.get(key);
node.value = value;
remove(node);
} else if (map.size() < capacity) {
node = new Node(key, value);
} else {
node = tail;
remove(node);
node.key = key;
node.value = value;
}
append(node);
}
private Node remove(Node node) {
map.remove(node.key);
if (node.prev != null) {
node.prev.next = node.next;
}
if (node.next != null) {
node.next.prev = node.prev;
}
if (node == head) {
head = head.next;
}
if (node == tail) {
tail = tail.prev;
}
node.next = node.prev = null;
return node;
}
private Node append(Node node) {
map.put(node.key, node);
if (head == null) {
head = tail = node;
} else {
node.next = head;
head.prev = node;
head = node;
}
return head;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
Complexity
- Amortized Time = O(1) (get, put)
- Space = O(n) (HashMap)
Optimize
This post is licensed under CC BY 4.0 by the author.